Author Topic: THE LOGIC OF TRIKES an outsider's viewpoint by Andre Jute Part 1  (Read 3876 times)

Andre Jute

  • Hero Member
  • *****
  • Posts: 4064
THE LOGIC OF TRIKES
an outsider's viewpoint
by Andre Jute

When an uncommitted cyclist comes to look at recumbents, he sees
bicycles in which everything has been sacrificed for aerodynamic
advantage. Recumbents were originally presented as solving the problem
of the bike saddle, the last pressure point (pun intended) of diamond
frame design, by getting the rider's weight off his butt and onto his
back, and by lowering the seat on the bike to make it easier for older
people and the less nimble to mount and dismount. So much for good
intentions.

TWO WHEELERS
Beyond aero advantage -- and its resultant of speed -- two-wheel
recumbents have no advantage over a well-designed bicycle of
traditional geometry, even over the standard diamond frame.

They do however have a great many disadvantages. The greatest of these
is near-invisibility to drivers, symbolized by a flag on a flexible
antenna carried on many recumbents.

And designers have now taken the designs to such extremes that, far
from solving the problems of mounting and dismounting, recumbents
require distortions to mount and dismount, and a flexible spine even
to see the road from the extreme recumbent positions.

The mainstream of recumbents are in such a mess both as design and
marketing exercises that a whole new concept of so-called Compact Long
Wheelbase Semi-Recumbent bicycles was created to solve the same old
saddle and mounting problems all over again, of which the Giant Revive
is already off the market again, the USED Scooterbike isn't doing too
well, and the Utopia Phoenix sells well enough into its upmarket niche
recently to have been further developed.

RECUMBENT TRIKES
At first recumbent trikes seem to have an advantage: the stability of
three wheels. We can dismiss the socalled delta tricycles with the
single wheel at the front: they are inherently unstable when compared
like for like (wheel size and seat height) with the socalled tadpole
tricyles which carry the single wheel at the rear. We can also dismiss
the novelty of rear wheel steering as unsolved and very likely
inherently unstable.

Unfortunately, even on three wheels, designers have again gone to the
extremes for a sporting advantage and thereby frittered away the
advantage of the topology for everyone heyond the speedfreak minority.
In particular, they have gone for small wheels and consequently were
forced to install seats a very few inches off the ground, suitable
only for the young and flexible to drop into, from which no one can
rise gracefully. They have also, to gain the least frontal area, made
trikes pretty narrow (which again forces a very low seat to avoid the
thing overturning on the least taxing corner taken at low speed), so
that the nominal advantage of static stability doesn't carry over very
far into the dynamics of the trike in motion.

Because of the way trikes sacrifice everything for aerodynamics, I
have severe doubts whether any trike on the market will be faster
around a downhill corner than a recumbent bicycle with the same
frontal area. The road holding and handling of a two-wheeler will in
all respects be superior on a dry road and on clean wet roads too,
leaving the exceptional case of slippery roads (cow dung, mud) as the
natural milieu of the recumbent trike -- and who wants his face inches
above that shit?

OTHER COMMON PROBLEMS
Common recumbent two-wheelers and trikes place the rider's feet
vulnerably out in front of the wheels; you can forget riding these
things in mixed automobile and pedestrian traffic. You can't use them
for a dash across a piece of pavement as you can an upright bike.
Given that the rider's height on them is conducive to a feeling of
insecurity in traffic, that limits their use severely. I define a
utility bicycle as one the owner rides from his door on every
occasion; a bicycle that must be carried on an automobile to where one
can ride it is a novelty item, not a useful bike.

Because standard types of recumbents carry the feet way out in front
of the front wheels, the chainlines are grossly inefficient and ugly
and expensive to maintain. That alone is enough to condemn recumbents
for any thoughtful engineer.

CAN A COMFORTABLE AND STABLE TRIKE BE BUILT?
It may be possible. Posit a 29er trike with 700 wheels and balloon
tyres to reduce the spinging excursion at the rear wheel, and thereby
reduce damping and other control requirements, some of the less
obvious ones to be discussed below. Of course it is a tadpole, with
two wheels forward which steer and one at the rear which is driven.
The bottom bracket is on the swing arm carrying the rear wheel and
rear suspension, and the arm is pivoted in front of the bottom bracket
or concentrically with it so that the chain line is straight and
without idlers when an internal gear hub is used. Practically then the
crank must be behind the front axle which is in any event desirable
from a safety and psychological viewpoint. The seat can be put at the
same height as an office chair so that anyone can sit down gracefully
on it and rise equally gracefully from it.

At this point the recumbent faithful will start screeching
hysterically that the thing will fall over. But that is because they
haven't put their minds in gear and are simply assuming that such a
trike will be built to the same dimensions and perverted principles of
current offerings.

WHY DO TRIKES TURN OVER?
Vehicles need a point to flip themselves over sideways: something must
dig in to cause the flip.

Bicycles and motorbikes cannot reach the sticking point that leads to
the flip because their weight and payload lies directly in line with
the wheels under virtually all conditions of tilt; when traction is
lost, the wheels slide away.

The roll centre is defined on the centre line of a multiwheel vehicle
by the suspensions linkages. The centre of gravity is defined by the
distribution of masses in the vehicle; think of it as the pivot of the
scales (a three-dimensional definition is below).

On a fourwheel vehicle the sticking-point is the line between the
centres of the contact patches of the tires of the front and rear
wheels on the inside of the corner. When the weight of the vehicle
reacts with the centripetal force through the roll centre to shift the
centre of gravity of the vehicle and payload outside this line, it
flips: the scales are no longer balanced. It's a little more
complicated than that but for bicycle tires with tiny contact patches
and in an application where zero-scrub radius is in any event de
riguer, we can take the tire centreline as the datum point.

In real life the centre of gravity of the vehicle (including its
occupant) is defined in three dimensions. On a tricycle for one
occupant it very likely falls on the longitudinal centreline, so we
need only to know where the CoG resides at standstill on the wheelbase
and what its static height is. We will of course design suspension
linkages that control dive under braking and squat under acceleration,
so that all that concerns us now is the sideways movement of the CoG
in a turn.

The flipover line on a tricyle runs between the centres of the contact
patches of the front inside tyre in the corner and the single rear
tyre. Thus, to make the thing corner well, it is necessary to move the
CoG as near to over the front axle as is possible in order to get it
as far as possible from the flipover barrier. This is impossible to do
if the rider's feet are to be inside the wheelbase or at least not too
far in front of the front axle line. But there are many ways to skin a
cat if the designer doesn't allow current practice to handcuff him to
fashionable stupidities.

FIRST SOLUTION TO A COMFORTABLE UTILITY TRIKE
We're still assuming a trike with the seat at office height and common
29er balloon wheels. The seat height determines the hub height and
therefore the size of the wheel/tyre combination.

We need the large wheels because, though in theory we can attach
control arms anywhere along the height of the wheel, in practice (and
most especially on a bicycle where ounces count!), the control arms,
which determine the start position of the centre of gravity and its
sideways motion, are best disposed around the vertical centre of the
wheel. 36 inch monocycle wheels, for which Croker can supply tyres,
would be even better because they would put the seat below the hubs,
but such wheels/tyres are less common so let's stick with the common
29er which puts the bottom of the seat at hub height.

Now, the wider the front track, and the longer the wheelbase (on a
tricycle), the further the centre of gravity has to travel to cross
the flipover line between the front and rear contact patches. Having
the bottom bracket inside the wheelbase together with a lowish seat
already makes for a long wheelbase, so that is taken care of.

For stability the track should be as wide as possible. The question
is, will the resulting vehicle be viewed as an invalid carriage, in
which case it should be narrow enough to fit on pavements, or will it
be a general utility vehicle with stability for fast corners on the
open road?

If stability on the open road is wanted, the track should be around
five feet, which would make the bicycle as wide as a small car.

Voila, we now have a tricycle with the seat at a comfortable height
and with stability around corners.

COMPARISON WITH EXISTING RECUMBENT TRIKE DESIGNS
The contortions of the current crop of recumbent trike designers are
seen to be injurious to their sales for no great advantage except that
in some extreme cases their tricycles are narrow enough to go on
pavements -- and in those cases my high but widebase design will kill
them around fast corners. Being aerodynamically fast is no use if the
aero advantage is brought about by being so narrow that the trike
flips in corners taken at more than moderate speed.

In short, current ultra-recumbent trikes are claimed to be extreme but
in fact are compromised on every aspect of performance.

COMPARING THE COMFORT-TRIKE WITH A TWO-WHEELER
At this point my comfortable trike suffers the same *competitive*
problem vis a vis two-wheelers around really fast corners as the
standard ultra-low trike available off the shelf right now from every
run-of-the-mill bent maker: a two-wheel bike is much faster around
corners under all but the least likely circumstances. A skilled and
brave rider on a two-wheeler on a dry road will be hanging in there
long after any tricycle, no matter how low and how wide, has flipped
over: this conclusion is inherent in the angling of the flipover line
between the front and rear wheels. You can see this conclusion easily
when you consider that a four-wheel human powered vehicle of the same
track as the tricycle will give the two-wheeler a much closer run for
its money -- and will still lose unless the track is made grotesquely
wide and the test is conducted on a very wide, uncambered surface (an
airport, a closed multilane road? -- see, we're talking about
extremes).

« Last Edit: June 19, 2013, 07:52:29 am by Hobbes »

Andre Jute

  • Hero Member
  • *****
  • Posts: 4064
Re: THE LOGIC OF TRIKES an outsider's viewpoint by Andre Jute Part 2
« Reply #1 on: June 19, 2013, 07:45:52 am »
THE LOGIC OF TRIKES an outsider's viewpoint by Andre Jute Part 2

SECOND SOLUTION: MAKING THE COMFORTABLE TRICYCLE FAST
There is a way to make a trike or a quadricycle hang on to the road
after the two-wheeler has lost traction and balance and slid away in
the ditch. It is, historically, an accident of incompetent suspension
design, in which equal length, parallel wishbones (and other older
suspensions), failed to stop the body of the car tilting, and failed
to hold the wheel upright (the two prime desiderata of automobile
suspension design).

However, with narrow bicycle tyres on a human powered tricycle (or
quadricycle) it is desirable for the wheels and the body to tilt,
because in that way the vehicle can be made to emulate cycle leanover,
and thus hang on to traction longer and, most of all, avoid flipping
over longer, instead sliding. Such a vehicle is generally referred to
as "leaning" or "tilting".

The design requirements of a tilting tricycle or quadricycle are for
the most part simple to anyone with automobile experience: whatever
you learned is totally undesirable in a good racing car will make a
wonderful tilting vehicle!

A tilting vehicle must have its roll centre at ground level and
suspension linkages that allow the body to tilt in roll and the wheel
camber to change proportionally to the roll. That's easily taken care
of by parallel, equal length wishbones. Tilting to 35 degrees from
horizontal seems reasonable. A tilting vehicle must have zero scrub
radius and this is easily taken care of by a somewhat extreme kingpin
inclination. Ackermann steering arm angles must be chosen with some
care to avoid the desire for reasonably light steering interfering
with the tilting. Suitable castor and trail to give a tilting vehicle
steering the correct self-centring and weight can be discovered on a
drawing or on a model or on the road by using adjustable links in the
suspension. Adjustable links would be desireable anyway to regulate
the degree of proportionality between roll and camber, that is, to
adjust the suspension ever so slightly away from equal length.
Progressive springing and damping at the front wheels, especially if
the progression is adjustable (a row of mounting points will do fine),
will help control the tilt for various amounts of steer angle. A
common disc brake on any swinging arm can be used to lock the tilting
at standstill.

It all sounds like a great deal of work with parameters which fight
each other, and it is, but the computer makes what was impossible well
within living memory not only easy but comparatively fast.

At this point we have a comfortable and practical tilting tricycle
which, unless it is grossly badly executed, will give a two-wheeler
real competion around a corner even in the dry, and which will shrug
off bad roads.

CAN A TILTING TRI/QUADRICYCLE BE PERFECT?
In theory, yes, if it has electricity for computing power and for
driving stepper motors; it might be possible to run electronic
controls for active tilting suspension off a hub dynamo. (Shimano has
long since commercialized active Di2 suspension forks and gear
changing run off a hub dynamo.) In practice, even powered tilting
devices do not yet respond perfectly to imperfect roads.

Strictly human-powered tilting vehicles with more than two wheels are
far from a solved problem. The difficulty is not tilting: on roads
cambered perfectly appropriately in turns, tilting can be automatic,
look ma, no hands; if such roads between turns were furthermore table-
flat, the perfect tilting trike would need no steering whatsoever.
Read that again: no steering. The problem is that no road is perfectly
flat, nor ever perfectly cambered, and no trike is perfectly built,
nor can the human passenger ever be perfectly symmetrical, sit
perfectly still on the straights or dispose of his weight perfectly
optimally in corners.

Steering is essential and will always be. But steering fights tilting.
In addition, one might wish the vehicle to tilt more or less than
dictated by the real-life camber on real-life roads (as distinct from
the ideal roads in the computer), for instance for something as simple
as a bumpy road or for cutting an apex, so a manual tilt control (in
addition to the stops built into the suspension to limit suspension
arm travel to a tilt of 35 degrees) is desirable. Complications and
weight start to mount, and even the simplest system has a learning
curve.

Riding a tilting tri/quadricycle will never be as intuitive as riding
a bicycle (for a start, the rider needs to set it up for the curve
like a bicycle by first momentarily turning the wrong way, which isn't
what happens in a normal multi-wheel vehicle like a car).

The tilting tri/quadricycle, which seemed simple in conception, has
now been mechanically complicated and weighted up quite a bit, and we
see that to make it work perfectly not only counterintuitive
techniques but also a dangerous new control (the tilt control) will
have to be learned. It is a dangerous control because overenthusiastic
or clumsy or ignorant use can achieve what the tilting mechanism is
intended to prevent, flip the vehicle over.

Or the designer can throw up his hands and say that for safe operation
and the least mechanical complication and light weight, he will
sacrifice theoretical perfections by building the tilting tri/
quadricycle with tilt (directly or indirectly) proportional to the
steering angle and thus controlled through the control already
familiar to riders, the steering.

IN SUMMARY
Current recumbent bicycles have betrayed their original impulse of a
butt-saver on which it was easy to sit down and get up. The same
applies to current recumbent trikes, whose single advantage of static
stability doesn't even apply dynamically to trikes with narrow tracks
(virtually all) for notional aero efficiency -- for what good is speed
if it flips the rider over on corners? Current recumbents are so
extreme (small wheels, groundhugging seats) that they are totally
impractical for everyday use.

It is possible to build a tricycle which is more practical by starting
with an office chair seat height and standard 29er wheels, and by
giving it a much wider track than is now common to make it faster
around corners than the current offerings. It will also seat the rider
high enough to make him feel more secure in traffic. While this
comfortable, practical tricycle by virtue of its wide track will be
faster around corners than the current recumbent trike offerings, it
will never be faster than two-wheelers. Another way of putting it is
that even this good and secure recumbent will always have a lower
cornering limit on good roads than a bicycle; it will only shine in
fast work in really bad conditions.

The good and practical trike can be made faster and more secure with
simple mechanical tilting. There is a learning requirement because
turn-in is different from other multi-wheeled vehicles the rider may
be familiar with. But a simple tilting trike or quadricycle should be
able to approach the cornering abilities of a bicycle on good roads
and exceed it on slippery roads (which means cow dung or mud or oil,
not just water on clean tarmac -- even balloon tyres have too small a
contact patch to hydroplane easily).

For more complication, weight and cost, variable tilting under the
control of the pilote is possible but there will be a steep learning
curve, and clumsy use could turn the controlled-tilting trike into a
more dangerous vehicle than the non-tilting or simple-tilting one.

CONCLUSION
On the whole then, current recumbents are simply fashion, not much
chop even for their stated purpose, perverted beyond any practical use
by their originally intended consumers, and even a good tricycle has
so few advantages that it is probably best limited to those with
balance problems or truly awful roads or for special purposes like
sand-sailing. If speed is required, simple tilting mechanisms on the
tricycle could move the roll-over speed in any corner upwards
appreciably.

Recumbents (two and three wheelers) are an unnecessary niche, nothing
but an extreme fashion accessory.

People (the old and the handicapped) who can truly benefit even from a
more practical tricycle as described above are likely to ride too
slowly to discover the speed advantages of a wide-track fast tadpole
and so should have high-seat tricycles with tracks narrow enough for
versatility on pavements and in doorways.

That makes even my practical, speedy trike design concept superfluous,
an interesting mental exercise of the type: "Well, we have trikes but
they don't deliver on their promises. Let's see if we can design one
that does." We can. So what?

Looks like I've wasted several days considering how recumbents can be
improved...

For the rest of us, it is not surprising that the diamond frame still
dominates. For those who want or need to put their feet flat on the
road without leaving the saddle or seat, the only small surprise is
that the Giant Revive did not survive, but it is no surprise that its
more traditional-appearing spiritual and geometric soul-sisters from
Electra and Trek and RANS are doing well, even becoming trendy. Nor is
it surprising that their makers eschew calling them what they are
(semi-recumbents) because the name "recumbent" is so discredited,
instead preferring "crank forward" or even the somewhat disturbing
"flatfoot".

IN THE END....
I conclude that the upright and the semi-recumbent bicycles and the
narrow wheelbase invalid carriage and the child's tricycle are
necessary human-power formats, and the rest (recumbents regardless of
number of wheels, plus my fast wide-track tadpole) are the unnecessary
jewelry of an excessive society.

Copyright © 2009, 2013 Andre Jute
Free to use on not-for-profit netsites as longs the entire article,
including this notice, is reprinted intact. Any other use contact
author
« Last Edit: June 19, 2013, 11:07:30 pm by Hobbes »

John Saxby

  • Hero Member
  • *****
  • Posts: 2000
Re: THE LOGIC OF TRIKES an outsider's viewpoint by Andre Jute Part 1
« Reply #2 on: June 19, 2013, 02:22:57 pm »
Fine piece of writing Andre, one that should win you "Heretic of the Year" award if the 'Bent Church guys on CGOAB see it. An accessible analysis, even for a bemused outsider like myself, your rant-struggling-to-get-out nicely constrained so that it's not distracting, but thankfully not neutered. The Imperatives of Fashion and Marketing seem relentless in their invasions of so many parts of life, no?  --  J.

JimK

  • Hero Member
  • *****
  • Posts: 1652
    • Interdependent Science
Re: THE LOGIC OF TRIKES an outsider's viewpoint by Andre Jute Part 1
« Reply #3 on: June 19, 2013, 03:19:07 pm »
I love this sort of thinking. Really try to make something work - that is the only fair way to deduce that it really can't.

I'm reading a bit of on-line discussion about price points for touring bikes. For sure $1500 will set a person up nicely enough. I remember some of my thinking when I sprang a lot more than that for my Nomad. Fenders, racks, nice lights... by the time you dress a bike up properly, there is a lot more money into it! But still the naked Nomad is not an inexpensive bike! Was it a smart investment?

But then sometimes I will be out riding and I can just sit up and comfortably ride no-hands for a mile or so, stretching my arms out and enjoying the scenery. I have no idea what it is about the geometry that makes in easy to ride no-hands on that bike but quite difficult on my other bikes! Sure happy that it worked out that way, though!



JWestland

  • Hero Member
  • *****
  • Posts: 756
Re: THE LOGIC OF TRIKES an outsider's viewpoint by Andre Jute Part 1
« Reply #4 on: June 19, 2013, 03:49:44 pm »
My aunt (now deceased) had a  Giant Revive I could have it if I wanted, but with a working bum/back (for now...give it another 30 years... ;) no good to me.

So she lived in The Netherlands where Roadsters reign. So what is the comfort over an already comfortable bike with a fat saddle? It's there, but may not so much.

In the USA the roadies would baulk at the weight of it, and it's no good for mountainbiking.

Le Manfriend hates trikes as you can't lean to steer and it's very counter intuitive. Not everybody gets on with a 3 wheel Bakfiets Cargo bike either.

However, special trikes are in use for disabled access, along with hand cycles so as a niche product they do have a place. Musing on how to improve such machines are therefore maybe useful to them.

PS You have too much time your hands :P
Pedal to the metal! Wind, rain, hills, braking power permitting ;)

Andre Jute

  • Hero Member
  • *****
  • Posts: 4064
Re: THE LOGIC OF TRIKES an outsider's viewpoint by Andre Jute Part 1
« Reply #5 on: June 19, 2013, 10:52:17 pm »
PS You have too much time your hands :P

Thinking is what I do for a living. Time on my hands is when my brain idles, which is never. Cyclists get a freebie on the clients and the shareholders.

Andre Jute
« Last Edit: June 19, 2013, 11:25:59 pm by Hobbes »

Andre Jute

  • Hero Member
  • *****
  • Posts: 4064
Re: THE LOGIC OF TRIKES an outsider's viewpoint by Andre Jute Part 1
« Reply #6 on: June 19, 2013, 11:53:36 pm »
Fine piece of writing Andre, one that should win you "Heretic of the Year" award if the 'Bent Church guys on CGOAB see it. An accessible analysis, even for a bemused outsider like myself, your rant-struggling-to-get-out nicely constrained so that it's not distracting, but thankfully not neutered. The Imperatives of Fashion and Marketing seem relentless in their invasions of so many parts of life, no?  --  J.

The bent guys went postal when that piece first appeared in 2009, I think, and I haven't been the flavour of any of their days since. Watch me weep.

I'm happy to hear that the quite complicated engineering concepts were at least accessible to a non-specialist. (The One that all writers on engineering who aspire to style emulate is the late, great Len Setwright.) Don't worry about full understanding. They have a whole section of engineers at Daimler-Benz who're gaining their understanding of tilting vehicles from three graphs that I forgot to label in my book DESIGNING AND BUILDING SPECIAL CARS! Unless you have computer control on the tilting trike, it will never match what a human does intuitively on a two wheeler. That means plenty of little stepper motors and complications, etc, for no great advantage. It's a lost cause, though if you have the money, and I had the years, I could make it work as an expensive curiosity to be taken out on rainy days or slurried farm lanes...

I love this sort of thinking. Really try to make something work - that is the only fair way to deduce that it really can't.

Novel way of putting it. I think you can say I gave it a good go, and succeeded in determining everything that is required to make a fast road tadpole tricycle work, but also in determining that it fills no engineering or cycling need. Still, it's the sort of challenge I like.

Andre Jute

JimK

  • Hero Member
  • *****
  • Posts: 1652
    • Interdependent Science
Re: THE LOGIC OF TRIKES an outsider's viewpoint by Andre Jute Part 1
« Reply #7 on: June 20, 2013, 12:08:51 am »
Novel way of putting it.

I've had some success over the years with the opposite strategy: trying to prove something impossible and not quite managing to pull it off because while this won't work and that won't work there is this strange other way... got a few novel products into the market like that!

I'll be looking for a fancy new tadpole trike to appear for sale someplace soon!